
<Insert Picture Here>

Coherence Training
Introduction to Coherence

All Content
Proprietary and Confidential

Introductions

Course Structure

Course Structure

•

This is a first for Coherence
•

1st Three Day Course

•

1st Field / Sales / Consultant Oriented Course

•

Strategy
•

Introduction to Coherence

•

Progressively getting more technical and hands-on

•

Objective
•

Explain and Sell Coherence

•

Work on Proof-of-Concepts

•

Warning
•

“Coherence is technical”

Topics for Today

•

Why Coherence?
•

What is Coherence?

•

Coherence in the
Application-Tier

•

Customer Stories
•

Coherence
Demonstration

•

How Coherence Works
•

Grids and Data Grids

•

How much effort?
•

Coherence and other
Oracle Products

•

Solutions Architecture
Directions

•

Identifying Opportunities
•

Competitive Analysis

•

Proof of Concepts
•

Future Directions

Why Coherence?

Application Scalability

•

Scaling the Application-Tier is difficult

•

If it was easy

it would be an IDE option

•

Scalability is a design option
•

Requires knowledge, care and experience
•

Developers have the “option”

to consider building it in!
•

It’s not

an IDE option

•

Coherence is scalability infrastructure for the application-tier

Not possible!

A Scalability Refresher

What is Scalability?

•

Scalability:
“The degree to which the performance of a system

improves when more resources are added”

•

Linear Scalability:
“When resources are increased by a factor of n,
system performance improves by the factor of n”

•

Predictable Scalability:
“The ability to know in advance

of adding resources

the degree to which a system will

scale”

Scalability Approaches

Approach How Advantages Disadvantages

Vertical
“scaling-up”

Increase resources
in existing server(s)

Relatively simple process
(can be achieved overnight)

Transparent to system
architecture and development

Comparatively expensive
hardware (niche)

Limited Scalability (physical
limits typically encountered)

Increases cost of failure

Horizontal
“scaling-out”

Add more servers Comparatively inexpensive
hardware (commodity)

Virtually unlimited
scalability possible (typically
greater than scale-up
approach)

Applicable only when a
system is designed to “scale-
out”

May require months of
rework to achieve

Scalability may be limited by
“network”

Requires additional
administration

The Scale-up Challenge

•

Some systems just don’t “scale well”, regardless of
hardware

•

EG: O(n2) algorithms
•

That is: time = data-size 2

•

In 5 seconds, n ≈

2.24
•

In 2.5 seconds (2x scale-up / twice as fast),
n ≈

1.58 (not 1.12 as you’d expect)

•

As n → ∞, scale-up return diminishes
 dramatically

Developers and Scalability

Be aware!
•

Poorly designed algorithms and data structures may not scale

•

Scalability is often a non-functional requirement
•

Scalability is often “left to last”

and not “designed in up-front”

•

Developers tend to assume

that their system is scalable
•

Developers are often surprised

that their system is not scaling

•

Developers tend to assume

there is a quick fix

for scaling
•

Developers may assume

Coherence is a drop in solution

•

Coherence may not be

a solution (often it is…

more later)
•

While a system may be scalable, often operational

costs are

not taken into account

(it’s someone else’s problem)

Scalability and Performance

•

Scalability is like a Locomotive
•

Designed to handle load and capacity

•

Add more cars and engines (scale out)

•

Performance is like a Fast Car
•

Designed for speed (not capacity)

•

Improve engine and components (scale up)

•

You can’t just add them together!
They have to be designed.

•

15

What do we mean by “Scalable”?

•

High scale
•

Scales readily to ~100 servers

•

Practical limit of ~1000 servers
•

Support for thousands of simultaneous clients

•

Multiple Sites
•

Across continents & globe

•

Easy scale
•

Just plug in additional machines

•

While

system is running
•

No need for manual application partitioning

16

What do we mean by “Performance”?

•

Instant access
•

Clients can maintain coherent

data in local memory

•

Faster than disk or even network

•

Instant awareness
•

Clients can subscribe to real time events

•

Notification to application servers or even desktops

•

Parallel data processing
•

Clients can push processing to the servers

•

No data movement results in very high performance

Further Reading

•

http://en.wikipedia.org/wiki/Scalability

•

http://en.wikipedia.org/wiki/Amdahl%27s_law

•

http://en.wikipedia.org/wiki/Algorithmic_complexity

•

http://en.wikipedia.org/wiki/Big_O_notation

http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Algorithmic_complexity
http://en.wikipedia.org/wiki/Big_O_notation

Coherence Scalability

•

Coherence: Designed to scale-out the Application-tier
•

Standard Java Applications (JSE, non-JEE, container-less)

•

Web Applications (session state)
•

Middle-tier Applications (JEE, container-based)

•

Artifacts that can been scaled
•

Application and User State (objects)

•

Object Access (crud)
•

State Mutation Notifications (events)

•

Processing (updates, transactions)

Scaling the Application-Tier
(without Coherence)

Scaling the Application-tier
(without Coherence)

Approach How Advantages Disadvantages

Scale-Up

“It’s an
infrastructure
problem”

Buy Big Boxes

Increase Resources (cpu,
memory, hdd capacity, speed
and network, etc)

By specialized hardware
(Azul, Infiniband…)

Simple (overnight)
No development
No impact on internal

design

Expensive

Will hit physical limits

Will have to redesign
at limit

Non-graceful
deterioration at limit

Stop, Add, Restart
required to scale

Scaling the Application-tier
(without Coherence)

Approach How Advantages Disadvantages

Stateless
Scale-Out

“Push state
scale-out into
lower Data
Source layer”

“It’s the
DBA’s
problem”

Make application stateless
(eg: stateless sessions)

Use lots of stateless servers

Use load-balancing

Use “big” and “scalable” Data
Source to ensure application
state scale-out

Easy to develop (not
overnight, but relatively
simple as no state is
managed)

Scale-out is easy, just
add more servers

Only scales to match
underlying Data Source
performance

When underlying limit
is reached, have to
redesign

Network bottlenecks
experienced as data is
moved between layers

Scaling the Application-tier
(without Coherence)

Approach How Advantages Disadvantages

Caching

“Keep recent
copies of
state”

“We’ll save
the DB and
DBA by
caching”

Application keeps local
copies (in memory or on local
disk) of recently / commonly
used state

Seems simple

Reduces Data Source
and Network load

Significant application
performance
improvements

Maintaining
consistency of data
between Local and Data
Source instances can be
difficult

Require “messaging
infrastructure” to ensure
coherency across a
cluster (and application
development)

Typically applicable to
“read only” applications
and not “write a lot”
applications

Easy to get wrong

Scaling the Application-tier
(without Coherence)

Approach How Advantages Disadvantages

Use an
Application
Container

“Our magical
clustered
container will
scale our
application
infinitely”

Believe the vendors & the
marketing

Follow a “scalability
paradigm”

Use a “Clustering Container”

… It scaled the “Pet Store”
linearly, therefore our X
application will also scale
linearly (where X ≠ “Pet Store)

Simple

Well documented and
communicable paradigm

Easily scale
development team

Typically scales in-
the-small

Usually relies on
“scale-up” rather than
“scale-out”

Requires specialized
skills or products (out
side of the standard
paradigm) to really scale

Clustering is primarily
about High-Availability,
not Scalability!

Scaling the Application-tier
(without Coherence)

Approach How Advantages Disadvantages

Manually
partition the
Application
and / or
Data

“Scalability is
easier in
small bits”

Break the application domain
into independently scalable
components

Have separate teams deal
with their own components

Use “pools” of Services to
perform work

Use load-balancing to scale-
out

Seems simple

The problem isn’t as
big as it was before

Some components
may actually scale better
by themselves

Often difficult to
decompose the
application

What’s good for one
component, is often bad
for another (eg: if you
need ‘joins’)

Typically introduces
new bottlenecks (sharing
information between
components)

Managing an
application composed of
many independent parts
is more complex!

Scaling the Application-tier
(without Coherence)

•

In summary…
“Solving application-tier scalability is either;

a). someone else’s problem, or

b). involves the complex process of partitioning
and managing data, services and

coherency across a collection of servers.”

•

Coherence provides developer solutions for b) to
enable predictable application scale-out

Why Scaling-out the
Application-Tier is Hard!

Why Scaling-out the
Application-Tier is Hard!

•

Anyone can write network software these days…

•

Java, .NET, Ruby etc…

all provide network abstractions to
transfer data between applications on separate servers, even
around the world

•

You can learn it from the Internet

•

Anyone can write code to make software
communicate with other bits of software

Why Scaling-out the
Application-Tier is Hard!

•

However…
“It’s extremely difficult to write software that ensures

an unpredictably (dynamically)

growing collection of servers
connected by an unreliable network

can continuously work together
without losing information (or work)

in a manner that itself is linearly scalable”

•

Significance…
•

Achieving all of these things in the same product

•

Working together means “consensus”

has to be maintained!

Imagine a team where some
members…

•

Have a different impression of the actual members of
the team

•

Allocate tasks and information to their members (from
their perspective) but on behalf of the team

•

Result?
•

Inconsistent views of team information

•

Without consensus some information will be inconsistent (at
best) or be unavailable or lost (at worst / common)

Membership Consensus

•

Consensus between resources is fundamental to
ensure integrity of information (and work) when
scaling-out

•

Consensus is not

about roles, it’s about membership
•

It’s not what X is doing, but that X is in (or out of) the team.

•

What X “is doing”

is “state”

that may be shared amongst the
known

team

Membership Consensus

•

Membership Consensus:
“A common agreement between a set of processes
as to the membership of the group at a point in time”

•

Without

Consensus…
•

Applications can’t determine their reliably work together (like
a team!)

•

Partitioning of Data or Services can’t reliably be performed or
maintained

•

Data integrity and consistency can not be maintained across
a collection of processes or servers

Membership Consensus

•

Coherence has proprietary clustering technology that
continuously guarantees consensus

across a

collection of applications
•

Essentially…

all applications know of all other applications

•

With

Consensus…
•

Data and Services may be reliably partitioned across the
known members

•

Data and Services may be backed-up (on other members)
•

Applications may be scaled-out while remaining stateful

•

Application state can be maintained consistently

Traditional Scale-Out Approaches…

#1. Avoid the challenge of maintaining consensus
•

Opt for the “single point of knowledge”

#2. Have crude consensus mechanisms, that typically
fail and result in data integrity issues (including loss)

Client + Server Model
 (Hub + Spoke)

Master + Worker Model
 (Grid Agents)

Active + Passive
 (High Availability)

Traditional Scale-Out Consequences…

•

Have unbalanced / unfair load and task management
•

Some servers have greater system responsibility than others

•

Have Single Points of Bottleneck (SPoB)
•

Have Single Points of Failure (SPoF)

•

“Micro outages”

are magnified as you scale-out

•

Exhibit Strong Coupling to Physical Resources
•

Software completely dependent on individual physical servers

•

Require specialized deployment and operation for
individual Resources

•

Some servers require “special attention”

to operate

The Coherence Approach…

•

Traditional scale-out approaches limit
•

Scalability, Availability, Reliability and Performance

•

In Coherence…
•

Servers share responsibilities (health, services, data…)

•

No SPoB
•

No SPoF

•

Massively scalable by design

•

Logically servers form a “mesh”
•

No Masters / Slaves etc.

•

Members work together as a team

The Coherence Approach…

•

Consensus is key
•

Communication is more efficient (peer-to-peer)

•

No outages for voting (no need –

everyone is a peer)
•

No SPoF, SPoB

•

No need for broadcast traffic (yelling at each other)
•

You can do many things once you have “consensus”.

What is Coherence?

What is Coherence?

•

Coherence (deployment perspective)
•

Single Library*

•

Standard Java Archive “JAR”

for Java
•

Standard Dynamically Linked Library “DLL”

for .NET

connectivity (.Net 1.1 and 2.0)
•

*Other libraries for integration (Databases, Spring…)

•

No 3rd

party dependencies!
•

Minimal “invasion”

on standard code*

•

Configurable implementations of standard Map / Dictionary
interfaces (NamedCache)

•

Provides Predictable Scalable Caching
•

“RemoteException”

free distributed computing

What is Coherence?

•

Proprietary extensions provide powerful parallel
processing capabilities
•

Query, Events, Transactions

•

Use it in any Application-Tier layer

“The most expensive java.util.Map
implementation in the World?”

What is Coherence?

•

Coherence (architectural perspective)
•

Scale-out Applications State

•

Reliable Data Management / Data Abstraction Layer
•

Effortlessly Cluster Applications (clustering infrastructure)

•

Web (session management)
•

Front, Middle, Back Tiers

•

Thick Clients (AWT, Swing, Console, RCP…)
•

JSE or JEE

•

Remote Connectivity
•

Business Continuity and Disaster Recovery

•

Provide a Data Grid

What is Coherence?

•

Coherence is not
•

Messaging

•

Application Server
•

Database

•

Coherence addresses gaps

in existing solutions
•

Stronger data management than an Application Server

•

Better scale-out performance than an Application Server
•

Better scale-out performance than a Database Server

•

This implies heavily technical

differentiation and value
•

Coherence has enormous value
•

Communicating this value can be challenging

Scaling the Application-tier with
Coherence

Approach How Advantages Disadvantages

Use
Coherence
to share and
manage
objects
(application
state)

“Coherence
is
responsible
for my
objects”

Introduce Coherence libraries
into Application(s)

Use Coherence
NamedCache API (derived from
java.util.Map) to store
application state

Start multiple Coherence-
enabled processes to scale-out
(load balance) objects (data)

Simple

Transparent and
Automatic Partitioning of
Data

RemoteException-free
distributed computing

Itself is massively
scalable

Displaces other
technology (messaging)

Extremely
configurable

New paradigm

People tend to use old
patterns with it – that
don’t work or are overly
complicated

Configuration isn’t
easy (at first) mainly
because of the new
paradigm

Takes time for people
to “trust” the technology

Extremely
configurable

Coherence in the
Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

Coherence in the Application-Tier

“Wherever developers use java.util.Map
they can use Coherence.”

“The sky is the limit.”

Coherence Demonstration

Customer Stories

Retailer

•

Brick-and-mortar retailer has several online storefronts with read-
 heavy access to data such as catalogs and inventory

•

Bringing up an application server results in heavy load on the
database. Bringing up dozens of these instances in a short
period of time results in system outages.

•

Customer loads the data once into Coherence, and then all
subsequent accesses are against Coherence

Insurance Company

•

Insurance provider has self-service website for customers

•

Database was being crushed by persistence of enormous user
profiles (>1MB each) for thousands of concurrent users

•

Coherence allows all data to be managed in-memory. User
profiles are persisted to the database once, at the end of the
user session.

•

Bonus: By managing the full dataset in memory, application was
able to survive a significant database outage (including
deliberate outages)

Hospitality Company

•

Need to enable thousands of customer service representatives
to maximize per-stay hotel revenue through a price optimization
engine

•

Throughput challenges due to volume of transactions exceeding
database server capacity

•

Coherence provides both scale-out transactional data
management and

instantaneous access to data for the price

optimization engine

Gaming Company

•

Gaming revenue tied directly to customer activity. Need for high-
 throughput, low-latency solution for transactions

•

Matching engine supporting several thousand matches per
second, with intense “hot spots”

on specific instruments

•

In-memory performance required to manage these hot spots,
some of which could account for close to half of all transactions

•

Need to scale-out to enable more markets. Markets created and
managed dynamically

•

Coherence used to manage data and perform transactions

Hedge Fund

•

Uses analytical techniques (trading models) to predict
trades (no human discretion) from real-time market
data

•

Real-time market data volumes compounding every
few months

•

Trading Models need to be constantly available
•

Need to trade more markets to reduce risk

•

Need to scale system out for real-time event matching
and historical back testing

How Coherence Works

Introduction to NamedCaches

•

Developers use NamedCaches to manage data

•

NamedCache
•

Logically equivalent to a Database table

•

Store related types of information (trades, orders, sessions)
•

May be hundreds / thousands of per Application

•

May be dynamically created
•

May contain any

data (no need to setup a schema)

•

No restriction on types (homogeneous and heterogeneous)
•

Not relational (but may be)

Introduction to NamedCaches

•

NamedCache implementations are configurable
•

Permit different mechanisms for organizing data

•

Permit different runtime characteristics (capacity,
performance etc…)

•

A mechanism for organizing data is often called a
Topology

or more generically, a Scheme

•

Coherence ships with some standard schemes
•

You may configure / override / create your own!

The Local Scheme
Coherence Schemes

The Local Scheme

•

Non-Clustered Local Cache
•

Contains a local references of POJOs in Application Heap

•

Why:
•

Replace in-house Cache implementations

•

Compatible & aligned with other Coherence Schemes

•

How:
•

Based on SafeHashMap (high-performance, thread-safe)

•

Size Limited (if specified)

•

Configurable Expiration Policies:
•

LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

The Local Scheme

The Distributed Scheme
Coherence Schemes

The Distributed Scheme

•

Sophisticated approach for Clustered Caching
•

Why:
•

Designed for extreme scalability

•

How:
•

Transparently partition, distribute and backup cache entries
across Members

•

Often referred to as ‘Partitioned Topology’

•

Configurable Expiration Policies:
•

LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

The Distributed Scheme

The Distributed Scheme

The Distributed Scheme

•

Each Member has logical access to all Entries
•

At most 1 network-hop for Access

•

At most 4 network-hops for Update
•

Regardless of Cluster Size

•

Linear Scalability
•

Cache Capacity Increases with Cluster Size

•

Coherence Load-Balances Partitions across Cluster
•

Point-to-Point Communication

•

No multicast required (sometimes not allowed)

The Distributed Scheme

The Distributed Scheme

•

Seamless Failover and Failback
•

Backups ‘promoted’

to be Primary

•

Primary ‘makes’

new Backup(s)

•

Invisible to Application
•

Apart from some latency on entry recovery

•

Recovery occurs in Parallel
•

Not 1 to 1 like Active + Passive architectures

•

Any Member can fail without data loss
•

Configurable # backups

•

No Developer or Infrastructure intervention

The Distributed Scheme

•

Benefits:
•

Deterministic Access and Update Latency (regardless of
Cluster Size)

•

Cache Capacity Scales with Cluster Size Linearly
•

Dynamically scalable without runtime reconfiguration

•

Constraints:
•

Cost of backup (but less than Replicated Topology)

•

Cost of non-local Entry Access (across the network)
•

(use Near Scheme)

The Distributed Scheme

•

Lookup-free Access to Entries!
•

Uses sophisticated ‘hashing’

to partition and load-balance

Entries onto Cluster Resources
•

No registry is required to locate cache entries in Cluster!

•

No proxies required to access POJOs in Cluster!

•

Master / Slave pattern at the Entry level!
•

Not a sequential JVM-based one-to-one recovery pattern

•

Cache still operational during recovery!

Under what conditions should
Coherence Failover?

Group Exercise

Distributed Scheme
Clients & Servers

Coherence Schemes

Distributed Scheme
Clients & Servers

•

Sometime Members should not store Data
•

Members lifetime in the cluster is short

•

Members join and leave frequently

•

Each time Membership changes, partitioning and
distribution needs to be re-assessed

•

To reduce impact, Members may be ‘storage
disabled’

Distributed Scheme
Clients & Servers

•

Cache Client
•

Member has storage disabled for Partitioned Topologies

•

Cache Server
•

Member has storage enabled for Partitioned Topologies

•

Same Cache API
•

Transparent to developer

•

Storage is (re)configured outside of code

Distributed Scheme
Clients & Servers

Scheme Composition
Coherence Schemes

Scheme Composition

•

Schemes may be ‘composed’

to address system
requirements and SLAs.
•

Keep recently used data in-memory, the rest on disk

•

Base Schemes
•

Class, Local, Replicated, Distributed, Extend*

•

Composite Schemes:
•

Near, Overflow (to disk)

•

Allow other schemes to be ‘plugged in’

The Near Scheme
Coherence Schemes

The Near Scheme

•

A composition of pluggable Front

and Back

schemes
•

Provides L1 and L2 caching (cache of a cache)

•

Why:
•

Partitioned Topology may always go across the wire

•

Need a local cache (L1) over the distributed scheme (L2)
•

Best option for scalable performance!

•

How:
•

Configure ‘front’

and ‘back’

topologies

•

Configurable Expiration Policies:
•

LFU, LRU, Hybrid (LFU+LRU), Time-based, Never,
Pluggable

The Near Scheme

The Near Scheme

The Near Scheme
Coherency Options

•

Local Cache Coherency Options
•

Seppuku: Event-Based ‘Kill Yourself’

Invalidation

•

Standard Expiry: LFU, LRU, Hybrid, Custom

•

No messaging system required for invalidation!
•

Built into infrastructure

•

High-performance

The Near Scheme

The Mechanics of Schemes
Coherence Schemes

The Mechanics of Schemes

•

Schemes themselves are customizable (pluggable)

•

The underlying component that manages data in a
scheme can be replaced / customized!
•

This map is called the BackingMap

•

Examples:
•

Handle ‘overflow’

by writing to disk

•

Handle ‘cache misses’

by reading from Data Source
•

Write to Data Source on ‘put’

•

Use Extend* to connect to and access other Clusters

Data Source Integration
Coherence Schemes

Read Write Backing Map

•

One of many BackingMaps that can be used to
customize Coherence

•

Read Write Backing Map provides a mechanism to
integrate directly with a Data Source.

Data Source Integration

Data Source Integration

Data Source Integration

Coherence Demonstration
(Revisited)

Grids and Data Grids

Different uses of “Grid”

•

Compute Grids
•

Platform Symphony and LSF (batch)
•

DataSynapse GridServer

•

Shared Infrastructure Provisioning
•

Platform EGO
•

DataSynapse FabricServer
•

WebSphere XD
•

GigaSpaces Enterprise
•

VMWare

Different uses of “Grid”

•

Database Grids
•

Oracle RAC

•

Data Grids
•

Oracle Coherence
•

IBM ObjectGrid
•

Gemstone Gemfire
•

GigaSpaces Enterprise

Clusters, Grids and Data Grids

Clusters Compute Grids Data Grids (Coherence)

Goals Availability
Performance

Scalability
Capacity

Availability
Scalability
Capacity

Performance

Resources Homogeneous Heterogeneous Both

Utilization Fixed
Single Purpose

Dynamic
Multi-purpose

Dynamic
Multi-purpose

Configuration Static Dynamic Dynamic

Scale-Out
Process

Add Resources
Reconfigure

Add Resources

 (on the fly)
Add Resources

 (on the fly)

Clusters, Grids and Data Grids

Clusters Compute Grids Data Grids (Coherence)

Data / Service
Partitioning

Manually Configured Dynamic Dynamic

Hardware
Coupling

Tight Loose
(Virtualized)

Loose
(Virtualized)

Failover /
Recovery
Process

Manually Configured
(one to one)

Transparent

 (one to many)
Transparent

 (one to many)

Processing Client-Based Grid-Based Both

Grid Computing Evolution: Part I

Traditional Compute GridTraditional Compute Grid

Grid Manager

Grid Tasks

•

Emphasis on orchestrating tasks
out to compute nodes in grid
•Data Set either loaded locally or
pulled off of back end data source
•Applications Highly Customized for
Grid Environment

Grid Applications

Great processing scalability with inevitable data bottlenecking
Orchestration can be point of bottleneck as well

Grid Computing Evolution: Part II

Oracle Coherence

Oracle RAC

Traditional Compute Grid with Data Scale OutTraditional Compute Grid with Data Scale Out

High Performance Computing (HPC)High Performance Computing (HPC)

Grid Manager

Grid Tasks

Grid Applications

•Oracle Coherence Data Grid
Overlay onto Compute Grid
•

Compute Grid Scale Out with
Data Fault Tolerance

•

Massive Persistent Scale Out
with Oracle RAC

Applications still Highly Customized
for Grid Environment!

Oracle Grid Computing: Enterprise
Ready

Enterprise Application GridEnterprise Application Grid

Extreme Transaction Processing XTPExtreme Transaction Processing XTP

Oracle RAC

•

Common Shared Application
Infrastructure (Application
Virtualization)

•

Data Virtualization (Data as a
Service)

•

Middle tier scale out for Grid
Based OLTP

•

Massive Persistent scale out
with Oracle RAC

Oracle Coherence

Application
Tier

How much effort?

How much effort?

“Coherence is the easiest means
of achieving massive scalable performance”

•

Customer developer takes on added responsibility

•

Developer explicitly controls data management
•

Slightly lower-level than the usual SQL queries and
transactions

•

Working with Objects, not relational rows

•

In practice is often easier

than working with a
database

•

Developers tend to dislike databases but like simple APIs

How much effort?

•

How does a developer access the Data Grid?

•

Customer development team modifies

the application
to access Coherence via an API

•

Some “drop in”

functionality
•

HTTP session management

•

Clustered caches for Hibernate, TopLink, BEA Portal, etc.

How much effort?

•

Simple caching or session management
•

A week or two of work to change the application and set up
the production environment

•

Extreme Transaction Processing (XTP)
•

Several months of development followed by several weeks of
preparation for production

•

ROI
•

Massive Predictable Scalability

•

High Availability, High Performance, Parallelisation

How much effort?

•

Most customers start off simple
•

Then grow into more advanced usage

•

Buy-in for simple caching, then want more
•

Buy-in for advanced functionality, but start off with the basics
to get quick value and also gain production experience

•

Recommended Approach!

•

Most customers, an iterative approach
•

Incrementally taking advantage of more and more
functionality

How much effort?

•

Many customers can

go into production without any
assistance
•

But we try

to be involved to avoid surprises in production

•

ie: support!

•

For the typical customer:
•

2-5 days of onsite support for POC and initial development

•

A few discussions with support via email/phone
•

1 day review of production plans

•

The customer handles the rest

Coherence Editions

Oracle Coherence
Product Set

•

Standard Edition
•

Baseline Functionality

•

Clustered Caching

•

Enterprise Edition
•

Application Server Market

•

Includes Standard Edition Functionality
•

Read/Write Through Data

•

Transactional

•

Grid Edition
•

Grid Market

•

Includes Enterprise Edition Functionality
•

Desktop Clients and Near/Local caches

•

Real Time Clients –

Continuous Query

Coherence Grid Clients

RealTime
Client

Data
Client

Provides instantaneous view of data on user
desktops whenever it changes in the data grid
• Real time data feeds to the desktop (positions, prices, logistics)
• Ready for transactional usage
• First class access to data across the entire enterprise

Stateless desktop and server access to the data grid
• Full access to data and services
• Intended for enterprise-wide distribution
• Provided in all editions

Fusion Middleware Integration
(Available Now)

Oracle Fusion Middleware
Coherence Integration Points

Coherence Grid and ClustersData Caching, Extended
State Replication, Shared

In-Memory Infrastructure

Session Sharing

and Data Caching

Shared Service for

Java, .NET

Accelerated

Stateful Business

Processes

Clustered

BAM Infrastructure

Coherence and Fusion Middleware
Short Term Integration

•

Fusion Middleware with Coherence Grid
•

HTTP Session State Management

•

Coherence Persistence with TopLink
•

SOA Integration

•

Maximum Availability Architecture

Coherence Grid with Fusion
Middleware

•

Deployed as separate tier
•

Provides shared in-memory data grid to all FMW

•

Embedded in middleware applications
•

Provides in-memory data grid for application layer

•

Deploy both in middleware and separate tier
•

Common scenario

Coherence as a
Separate Tier with FMW

WebCenter

Java EE

SOA
Coherence Data

Grid Service

Web
Tier

IDM

Firewall Firewall Firewall

RAC

Router

External
Users

Internal
Users

Internet

Internal
Users

Internal
Users

SOA Application

Coherence Embedded and Separate
Tier

Coherence

SOA Suite

In Memory Coherence Data Grid

Java Application

Coherence

Java EE

Portal Application

Coherence

Web Center

Oracle Application Server

Session State Management Integration

•

Coherence*Web is a generalized state replication
framework for any application server
•

Certified with JBoss, WebSphere, WebLogic, Tomcat, SunOne

•

Plugs directly into Oracle Application Server
•

HTTP session only

•

Augments existing HTTP session state replication
•

Stateful EJB replication uses existing OracleAS infrastructure

•

Value with Oracle Application Server
•

More sophisticated state replication -

policy based

•

Transactionality for session replication
•

Offload state replication to independent tier from application server

Coherence*Web:
Session State Management

Web
Tier

Clustered Oracle, WebLogic,
WebSphere, JBoss, Tomcat

Load
Balanced

Router

Coherence
Web

Java EE or Servlet
Container

Web Application

Application
State

Coherence
Web

Java EE or Servlet
Container

Web Application

Application
State

In Memory Coherence Data
Grid for Session State

Coherence
Web

Java EE or Servlet
Container

Web Application

Application
State

Coherence Persistence Integration

•

Coherence integrates tightly with databases
•

Read through –

pass query through to database

•

Write through –

persist cache data to database
•

Refresh Ahead –

refresh cache from database

•

Write Behind –

asynchronously persist to database
•

Persistence solution integration
•

Out of box with TopLink

•

Out of box with Hibernate
•

Simple JDBC

Oracle Coherence:
Persistence Integration

•

Built in support for read-
 through and write-

 through caching
•

Built in support
refresh-ahead
and write-behind caching

•

Support for TopLink,
Hibernate, JDO and
custom

RAC

JVM

Cache

Cachestore

TopLink

JVM

Cache

Cachestore

TopLink

Store Load
In Memory Coherence Cluster

SOA Integration

•

Coherence is a shared in-memory data grid service
•

Has standard client libraries for Java and .NET

•

Any Java client can invoke this service
•

Web Center, SOA Suite, EDA Suite …

•

BPEL and ESB can invoke Coherence via a WSIF
bindings
•

This is custom development effort

Oracle Coherence:
SOA Integration

Data Grid Service

Workflow

Custom Applications

fx

Rules

Packaged Applications

W
eb

 S
er

vi
ce

s
In

te
rf

ac
e:

 X
M

L,
 S

O
AP

,
W

SD
L,

 W
SI

F

5-15 min

5-15 min

Maximum Availability Architecture
Asymmetric Active/Passive

WebCenter

Web
Tier

IDM

Firewall

R
A

C

Global Router

SOA J2EE

Firewall

Firewall

Coherence Data
Grid Service

WebCenter

Web
Tier

IDM

Firewall

R
A

C

SOA J2EE

Firewall

Coherence Data
Grid Service

Standby SiteProduction Site
Firewall

OracleAS Guard

OracleAS Guard

Average
Latency and
Bandwidth

WAN

Future Fusion Middleware
Integration Points

Future Integration Points

•

TopLink Cache Coordination
•

OC4J JMS Clustering

•

BPEL Clustered In-Memory Dehydration
•

Portal Session Sharing

•

Maximum Availability Architecture
•

Oracle BAM

•

Oracle Service Delivery Platform

These are proposed projects

Cache Coordination for TopLink with
Oracle Coherence

•

Provide coordinated session cache for clustered
applications using TopLink

RAC

TopLink Coherence
Coordinated Cache

Application

TopLink

TopLink Coherence
Coordinated Cache

Application

TopLink

TopLink Coherence
Coordinated Cache

Application

TopLink

Oracle Application Server JMS
Clustering with Coherence

•

Provide reliable clustered in-memory JMS infrastructure

In Memory Queues

OC4J-JMS Provider

In Memory Coherence Data Grid

In Memory Queues

OC4J-JMS Provider

In Memory Queues

OC4J-JMS Provider

JMS Client JMS Client JMS Client

Accelerating BPEL Performance with
Coherence

•

Extreme BPEL performance using in memory
clustered Coherence for dehydration store

FMW Cluster

In Memory Coherence Data Grid BPEL Dehydration Store

BPEL PM BPEL PM BPEL PMBPEL PM

Oracle Web Center Portlet Session
Sharing

Web Center

Portlet 3 Portlet 4

Portlet 1 Portlet 2

WSRP Portlet 4
Producer

WSRP Portlet 3
Producer

WSRP Portlet 1
Producer

WSRP Portlet 2
Producer

In Memory Coherence Data Grid for WSRP Producer/Consumer Session Sharing

WSRP Producer
Server

WSRP Producer
Server

Maximum Availability Architecture
Active/Active

WebCenter

Web
Tier

IDM

Firewall

R
A

C

Global Router

SOA J2EE

Firewall

Firewall

WebCenter

Web
Tier

IDM

Firewall

R
A

C

SOA J2EE

Firewall

Coherence Data Grid Service

Active
Data Center 2

Firewall

Low Latency
High

Bandwidth
WAN

Active
Data Center 1

Passive

OracleAS Guard

Database Positioning

Database Integration

•

Oracle Database and RAC
•

Middleware applications using Coherence require high QoS
persistence –

Oracle RAC

•

Berkeley Database
•

Provides disk based cache overflow for Coherence

•

TimesTen Database
•

Planned utilization of Coherence clustering technology

Oracle DBMS, TimesTen,
Berkeley
Natural Integration Points

Berkeley DB
Cache Overflow Integration

with Coherence

TimesTen
Clustered Caching with

Coherence

Oracle RAC

Persistence QoS
with Coherence

Middleware Infrastructure

Oracle RAC

Middleware Infrastructure

Coherence

Berkeley DB
Cache Overflow

Oracle RAC

Middleware Infrastructure
Coherence

Application
Servers

Application
Servers

Times
Ten

Times
Ten

Coherence and TimesTen

Scale Out

Database
Functionality

Oracle
Coherence

Two Best of Breed Solutions for
managing data in the middle tier

Both provide:
• High Throughput
• Data Reliability
• High Availability

Single Node

(SMP)

Cluster

(N-nodes)
Grid

(NNN-nodes)

Search &

Aggregation

SQL

Operations

Full SQL w/

BI Queries Oracle
TimesTen

Real-Time Data in the Middle Tier

App
#1

Oracle’s products offer complementary approaches to staging data in
the middle tier for high performance

Oracle Coherence provides shared
access to distributed data

in a peer-to-peer “data grid”

Oracle TimesTen provides a
relational database cache for data

shared via Oracle database

App
#2

Replication

App
#1

App
#3

Replication

Distribution

In-memory
databases

In-memory
distributed

data

App
#2

Data
Sources

Database Messaging
Systems

Applications

Coherence

Coherence and TimesTen

Feature / Capability Coherence In-Memory
Data Grid

TimesTen In-Memory
Database Cache

Performance Technique In-memory distributed data in
the middle tier

In-memory relational database /
cache in the middle tier

Data Model Object model
(objects/attributes)

Relational database
(tables/rows/columns)

Data Access Standard Languages
(Java, .NET, other languages)

Standard API’s (ODBC/JDBC)
Standard SQL

Data Sources Database, Message Infrastructure
(JMS, AQ), Applications

Database

System Focus &
Core Value

Real-time access/transactions
against shared, distributed in-
memory data

Real-time access to mid-tier data or
cached database tables

System Scope & Scale Large, multi-node grid Group of replicated servers

Query Capability Parallel filters over data SQL, including BI queries & joins
Database Integration Via object/relational mapping

(Toplink/Hibernate) or JDBC
Built-in caching to Oracle database
& Oracle RAC

Coherence and other Oracle
Products (summary)

How does Coherence compare to other
Oracle products?

•

Oracle RAC
•

Scale-out database server

•

Oracle TimesTen
•

High-performance in-memory database

•

Oracle Caching Solutions
•

Oracle Web Cache for content
•

Oracle Java Object Cache (JOC) for Java objects

•

Oracle TopLink
•

Object-Relational Mapping solution

•

Oracle OC4J / SOA
•

Oracle Application Server

Coherence and RAC

•

RAC is a database
•

Scale-out persistence (storage to disk)

•

Ad hoc query support
•

Mature transactional engine

•

Incredible 3rd

party support

•

Coherence is a data grid
•

Application works with data in Object form

•

Brings data management to the application tier
•

Explicit control over data management results in higher
scalability

•

In-memory access for better performance

Coherence and TimesTen

•

Coherence
•

“Scale-out object data management”

•

TimesTen
•

“Ultra-fast relational database”

•

Native relational view of data
•

Minimizes impact on the application

•

Single-server queries have more predictable performance
•

Ad hoc query support

Coherence and Oracle Caching
Solutions

•

Minimal overlap
•

Oracle Web Cache
•

Content Caching

•

Oracle Java Object Cache
•

Read Caching of Java Objects

•

Oracle Coherence
•

Read Caching (typically high-scale and/or high-contention)

•

Scaling out Stateful Applications
•

In-memory transactions

Coherence and TopLink

•

TopLink
•

Ability to manage complex data models
•

Hundreds of tables (types of entities)

•

Support for read caching only
•

Scalability ultimately determined by the underlying database

•

Coherence
•

Difficult to manage complex data models
•

Typically fewer than 50 tables (types of entities)

•

Able to do all data management in-memory
•

Ability to scale independently of the underlying database

Coherence and OC4J/SOA

•

Coherence*Web already provides high-scale HTTP
session management for OC4J
•

Future integration plans are in the works

•

Coherence can be used to implement SOA
•

Requirements for massive scalability and availability

•

Coherence is not SOA/EAI
•

Not ESB solution (Policy enforcement, metadata
management, etc)

•

Not ETL solution (Data integration, format translation, etc)

Long-Term Positioning

•

Oracle Web Cache
•

No overlap

•

Oracle Java Object Cache
•

Always lead with Coherence
•

Coherence will eventually supplant JOC
•

No timeline has been determined

•

TimesTen
•

In-memory relational data management

•

RAC
•

Scale-out relational data management

•

Coherence
•

Scale-out data management in the application tier
•

Grid-enable Fusion Middleware

Solutions Architecture
Directions

The Spectrum of Solutions Architecture

Messages Stateful Applications Persistent State

Application Servers
Request/Response Messages: Servlets, SLSB, Compute Grid

Stateful

Apps: HTTP Sessions, Stateful

EJBs, JavaSpaces

Messaging
Topics, Queues

Coherence Data Grid

Database

S
calable P

erform
ance

S
calable P

erform
ance

Data Grids not necessary
for non-replicated

conversational state

Data Grids not necessary
for non-replicated

conversational state

Lack of data consistency
guarantees for in-memory

replication

Lack of data consistency
guarantees for in-memory

replication

Databases remain
the best option for

disk-based
persistent state

Databases remain
the best option for

disk-based
persistent state

Integration
Integration

D
at

a
C

on
si

st
en

cy
D

at
a

C
on

si
st

en
cy

Types of Coherence Adoption

•

Read Caching
•

Read data from Coherence instead of a backend data source

•

Scaling Stateful

Applications
•

Scale-out of stateful

applications (HTTP sessions, stateful

 EJBs, etc.)

•

Extreme Transaction Processing (XTP)
•

Partially (or fully) offload transaction processing from a
database by managing data in the data grid

•

Provide real time visibility into these transaction via event
processing

Coherence Value

More reliable than
application servers

Read Caching

Stateful Applications

Better scalable
performance than
databases

XTP
• Query and Analytics
• Concurrency Control
• Persist in-memory or in-database
• Real-time events

Customer Use Cases are Shifting

•

Read Caching and Stateful

Applications are less critical

•

XTP workloads are driving core Coherence sales
•

Real time event processing is starting to gain importance

2004 2007 2010

Read Caching

2004 2007 2010

Stateful Applications

2004 2007 2010

XTP

2004 2007 2010

XTP: Real Time Events

Identifying Opportunities

Degrees of Buy-In
Identifying Opportunities

Implications on Lead Qualification

•

Read Caching
•

Only very high scale applications require Coherence

•

Smaller opportunities were generally not pursued at Tangosol
•

Indicator: Customers buy Coherence for large scale or to
mitigate risk

•

Stateful

Applications
•

In most (but not all) cases, limited revenue opportunity

•

Indicator: Massive

pain with current session management

Implications on Lead Qualification

•

XTP
•

Primary revenue stream for Coherence (>90% of customer
value?)

•

Indicator: Customer can’t (or won’t) achieve required
throughput or performance with database technologies

Implications on Lead Qualification

•

Buy in at bottom end (caching), work up (to XTP)

•

Customers with high-value requirements
•

Buy higher-end Coherence editions

•

Often start off conservatively (e.g. read caching) to gain
production experience with Coherence (if they have the luxury
of time)

•

Then move on to more advanced Coherence functionality

Implications on Lead Qualification

•

Customers with low-value requirements
•

Buy low-end Coherence (Standard Edition)

•

Often come to Coherence for read caching or for help scaling
stateful

applications

•

Over time start to use more advanced Coherence functionality
•

Eventually upgrade to Enterprise Edition or Grid Edition

Implications on Lead Qualification

•

Due to very restricted sales and support resources …
•

Tangosol

was extremely

careful with lead qualification

•

Focus almost exclusively on high-value sales

•

Oracle impact
•

Low-value deals may become less expensive to pursue
•

Economies of scale

•

Low-value deals are also less expensive sales
•

Easier implementation

•

Easier budget approval
•

Low-value deals may outnumber high-value deals

Read Caching
Identifying Opportunities

Read Caching

•

Traditional use of the term “caching”
•

This is the only form of caching that can be truly “transparent”

•

Use: Presentation layer
•

(Almost) all content data is stale by definition

•

Use: Optimistic Concurrency
•

Update database if the cached value is still correct

Presentation Layer

•

Cached data
•

Almost never static data
•

Cached pages or other content
•

Inventory levels, current prices (e.g. 60-second freshness)

•

Benefits
•

Application instances can start up rapidly without crushing database
•

Easy to manage huge (100GB+) data sets
•

Avoid long GC pauses in application servers
•

Cycle application servers without flushing cache
•

Resistance to unintentional Denial of Service attacks
•

Thousands of users clicking repeatedly to see the current score of a sporting event,
or the current price of an auction

•

Automated “bots”

used to monitor and act on websites

•

Content caching is usually a low-value use of Coherence
•

Often using Coherence for ease-of-use and stability under load

Optimistic Transactions

•

Caching and Optimistic Transactions
•

Database accessed in READ_COMMITTED mode

•

Cache acts as READ_COMMITTED as well
•

Updates to the database use optimistic commit pattern
• Update table set X = :newValue if X =
:oldValue

•

Use Coherence as a plug-in
•

TopLink, Hibernate, Apache OpenJPA, BEA WebLogic

Portal

Server, etc.

Read Caching Assumptions

•

Very minimal requirements
•

Coherence does more than required

•

And can’t be detuned (other than disabling partition backups)

•

Cache data is a subset of the database
•

Always recoverable

•

Cache data is accessed as READ_COMMITTED
•

Only

requirement is a cached value must have existed in the

database at some

point in the past
•

Strictly speaking, no requirement for concurrency control in
the cache

•

Cache access is usually identity-based (e.g. primary
key)
•

Coherence supports queries, but the application needs to 164

Qualify In: Read Caching

•

Slow startup of servers
•

Cache once in Coherence, then load from there

•

Servers can come and go with no impact on database

•

Caching issues with ORM
•

Hibernate, TopLink, OpenJPA, etc.

•

Built-in caches are not fully coherent or very scalable

•

Very large caches (more than can comfortably fit in a
single JVM)
•

Cache in Coherence to avoid garbage collection pauses

•

Large, high-load deployments
•

Use Coherence to provide stability under load

165

Qualify Out: Read Caching

•

Most read caching use cases do not require
Coherence

•

If the application meets all of these requirements:
•

Runs on a small cluster (<4 servers)

•

Is very read-heavy
•

Needs only a small amount of cached data

•

Can tolerate slightly stale data
•

Is not running under heavy load

•

… then it probably does not need Coherence

•

Fortunately, there are still hundreds (thousands?) of
applications that do not meet these requirements

166

Stateful Applications
Identifying Opportunities

Stateful Applications

•

Stateful

applications manage data that
•

Exists beyond the scope of a single request

•

Is not externally visible (stored to database, sent via message
queue)

•

Coherence supports
•

Generic application state

•

Spring integration (“Spring Beans”)
•

HTTP sessions via Coherence*Web

Stateful Applications

•

Coherence does not support
•

Stateful

EJB

•

Can use Stateless Session Bean to manage clustered
state (more scalable)

•

JavaSpaces
•

An interesting niche technology that is completely
unsuitable for the mass market

Stateful EJB

•

No direct support for Stateful

Beans
•

Requires container support

•

Few apps use these anyway due to historic scaling issues

•

For EJB-centric applications …
•

Typically use Stateless Session Beans (SLSB)

•

Any inter-request state can be managed in Coherence
•

Persistence via ORM (TopLink, Hibernate, homegrown, etc)

Coherence*Web

•

Sessions managed in Coherence cache
•

Pluggable session models provide mapping
•

Supports database sync, query, etc (with some effort)

•

Fully coherent
•

No data corruption under load or rebalancing

•

Scalability to hundreds of nodes
•

Near cache with “present”

invalidation strategy
•

“Sticky”

session locking

Coherence*Web

•

Common session data format
•

Support for most web containers
•

Share across different web containers (OC4J, WebLogic, etc)
•

Share across different web applications in single container
•

Share across multiple web sites (e.g. clothing or automotive brands)

•

Support for huge sessions
•

1MB+

•

No requirement for sticky load balancer

Coherence*Web

•

Two-step install
•

Coherence*Web analyzes web application (.EAR, .WAR or
exploded)

•

Coherence*Web instruments the web application

•

More details
•

http://dev2dev.bea.com/pub/a/2005/05/session_management.

 html

XTP
Identifying Opportunities

Varying Levels of Commitment

•

Level “Zero”

is Read Caching
•

Level One
•

Concurrency control (locking)

•

Level Two
•

Real Time queries and analytical processing

•

Level Three
•

Commit transactions to Coherence

•

Level Four
•

Reacting to real time events

* Not a strict hierarchy, just a common pattern of adoption

Concurrency Control

•

Scalable distributed locking engine
•

Perform all locking against cached data

•

Perform all reads against cached data
•

Commit changes to both cache and database

•

Predictable performance under load
•

No unexpected rollbacks or conflicts
•

If the data grid is the only system updating the database*
•

All updates through the data grid make this a degree of
buy-in

* Still useful even with a shared database (though less so depending on
number of conflicting updates)

Queries and Analytics

•

Queries
•

Programmatic API (SQL-style queries)

•

Filter, aggregate, sort …

but no joins
•

Dealer.com

“Show all 4-door BMW sedans built after 1995”

•

Analytics
•

Coherence provides the scalable performance
•

Analytical processing logic is up to the developer

•

Very extensible yet simple programming model
•

Processed in parallel across the entire cluster

•

Same underlying technology for both

177

Queries and Analytics

•

Throughput
•

Process lots

of data …

in a reasonable amount of time

•

100 requests/sec, 1MB/request, <200ms/request (risk
calculations)

•

10,000 requests/sec, 10KB/request, <1 sec/request (inventory
queries)

•

Real Time
•

Process a reasonable amount of data …

immediately

•

1,000 requests/sec, 10KB/request, <10ms/request
(algorithmic trading)

178

Simple Queries

•

Reasons to not

use Coherence for queries
•

Not intended for ad hoc querying

•

Not optimized for query
•

A disk-based database may be faster for some types of
queries

•

Latency may increase with larger cluster sizes
•

“Slowest responder”

problem exacerbated by Java GC

pauses in clusters with hundreds of nodes

179

Simple Queries

•

Reasons to use Coherence
•

Data is already managed by Coherence

•

Many simple queries (e.g. hundreds) per user interaction
•

Getting queries off of overloaded database infrastructure

•

More predictable performance in production

180

Custom Analytics

•

General Approach
•

Send sub-calculations out to the cache servers

•

Compute sub-calculations against local data partitions
•

Bring sub-results back to the client and apply final processing

•

Requirements
•

Sub-results must be much smaller than the local data
partitions

•

The compute (CPU) on each node should be greater than the
cost of sending the request to the node (network)

•

In most cases, the data set should be large enough to justify
spreading it across multiple nodes

181

Write-Through Transactions

•

Coherence sets up the transactions
•

All reads and queries, all concurrency control

•

Possibly even constraint verification

•

Commit to the database
•

Regular database transactions

182

Write-Through Transactions

•

Benefits
•

Substantial offload of database

•

Application has more control over concurrency operations
•

Database acts as a normal System of Record

•

Drawbacks
•

Some application code changes required

•

Coherence limitations affect application design

183

Write-Behind Transactions

•

Everything in Coherence
•

All reads and queries

•

All concurrency control
•

All constraint verification

•

Even Commits

184

Write-Behind Transactions

•

Persist to database at some

point in the future
•

Bundling results in a few large database transactions

•

Reduce database load by (e.g.) 100x

•

Longer persistence delays
•

Increase risk exposure (“What happens if the whole cluster
fails?”)

•

But reduce load on database
•

Even a small delay (sub-second) can have huge benefits

185

Real Time Events

•

Maintain real time visibility into data changes

•

Desktops
•

The usual example is the “Trader desktop”

•

Watch data change in near real time
•

Typically a few milliseconds

•

Servers
•

Monitoring data to trigger additional processing
•

Event Driven Architecture within the data grid

•

Very wide-ranging set of use cases
•

Not many common patterns of usage

Competitive Analysis

Competition by Usage Patterns

GigaSpaces
Gemstone
Gemfire

IBM
ObjectGrid

Terracotta
(DSO)

Read Caching Yes Yes Yes Yes

Stateful
Applications

Yes
(incl. JavaSpaces)

Yes Yes Yes

Transactions
• Query and Analytics
• Concurrency Control
•

In-memory or in-
database
• Real-time events

Reliability issues

Development
challenges

Scalability
issues

Complexity
issues

We have very
limited
knowledge of
ObjectGrid

No

Competitive Overview

Need to eliminate “half-truths”
•

Reliability shell game: don’t worry “its magic”

•

We can scale to the moon: “show me”
•

“Datagriditis”: if I call it a data grid, it makes it one

Competitive Overview

•

Need to educate the consumer!
•

Don’t assume anything!

•

Better competitive differentiation earlier in the sales
cycle

•

Gain clarity of “mission critical-ness”

of opportunity

•

Expose their weaknesses and ensure they are part of
the POC

Key Coherence Differentiators

•

Technology
•

Reliability (esp. data consistency)

•

Scalability
•

Ease of use

•

Adoption
•

Largest Deployments

•

Largest Direct Installed Base
•

Largest Indirect Installed Base

•

Partnerships
•

Provisioning: DataSynapse, Platform

•

Influencers: Oracle, Intel, IBM, BEA

Competitive Field vs Coherence
Gigaspaces Gemstone Terracotta IBM

Positioning “Jack of all
trades” -- we
consistently
win on data
grid

Legacy
vendor, all
custom sales,
don’t see them
much

Hub-and-spoke,
poorly defined
HA, almost no
production
installs

New entrant,
immature
product

Presence All but the
smallest
engagements

Elephant
hunters: large,
complex

Minimal, but
always the “free”
option

Minimal

Company
Revenue

~ $10mm ~ $10mm ~ $0

Product Revenue Similar Minimal ~ $0 Minimal?

Data Grid
Revenue

50% 10% 0% Minimal?

Level of
Desperation?

“We’ll give
you the
software”

“We’ll give you
the software,
but you have
to buy
consulting”

“Buy consulting” None

Competitive Field vs Coherence

Gigaspaces Gemstone Terracotta IBM
Other revenue
sources

ROC, Service
and Compute
Grids

Legacy
software
(Smalltalk)

n/a

FUD Shelfware
Not all data
grids
Significant
ROC

Complicated
product built
as a series of
one-offs

Couldn’t sell it
so made it free

New entrant
Lack of
internal
support

Licensing Dozen+
licenses

Dozen+
licenses

? Clean

Glaring
weaknesses

Data loss
SBA / ROC
Significant
Operational
Cost

No Scalability
Hard to use

Non-scalable
hub
Immature HA

1
9
3

SWOT: Gigaspaces
Strengths
• JavaSpaces “religion”
• SQL/ESB/JMS functionality
• C++ today
• SLA provisioning, deployment
• GUI
• Ability to manage market perception

Opportunities
• Address weaknesses

Weaknesses
• JavaSpaces “baggage”
• No data consistency guarantees
• Non-native .NET/C++ implementation
• Complexity
• Poor SQL implementation
• Third party technology

Threats
• Merger with DataSynapse
• Intel VC
• Major OEM deals
• Buy-Out (BEA?)

SWOT: GemStone GemFire
Strengths
• Ability to pop up in large accounts
• Feed off of legacy installed base
• Production experience
•

Able/willing to do custom integration to
exotic systems
• Able to deliver C++ support today
• Wealthy new backer

Opportunities
• Address weaknesses
• Win at Citigroup

Weaknesses
• Poor scalability
• Price
• Poor .NET/C++ implementations
• Reputation (non-strategic)

Threats
• Get acquired
•

Gemfire architecture is strikingly similar
to Coherence

SWOT: IBM ObjectGrid
Strengths
• IBM scale/inertia
•

Clustering experience from WebSphere
XD

Opportunities
• Quickly add additional functionality

Weaknesses
• How dependent is it on WebSphere?
•

Early days of product (technology and
installed base)
•

IBM sells Hardware and Services, not
Software
• IBM scale/inertia

Threats
• Starts to be pushed widely by IBM

SWOT: Terracotta
Strengths
• Open Source

Opportunities
• Open source mindshare

Weaknesses
•

Open sourced because they couldn’t sell
it
•

“Transparent” clustering requires
massive XML configuration and intensive
knowledge of Java Memory Model (JSR
133), and in many cases rewriting the
application
• Hub-and-spoke architecture

Threats
• Adoption by low-end volume market
•

Many customers don’t actually care
about data correctness or scalability

Proof of Concepts

PoC (Good for Coherence)

•

Focus on reliability!
•

Focus on reliability! (again)

•

.NET
–

Our implementation is best by large margin

–

Any strategic product should support .NET ;-)

•

5+ physical servers
–

Gemstone falls apart, GigaSpaces

configuration PITA

•

Lots of data
–

Increased JVM count per machine (harder to scale)

–

Or increased GC pauses (data corruption)

PoC (Good for Coherence)

•

Lots of writers, lots of contention
–

Data corruption more likely when multiple writers of same data

•

Test multi-server consistency
–

Operations spanning data on multiple servers

–

Run queries during server failure-failback
–

Multi-server updates in GigaSpaces

are distributed

txns!

PoC (Bad for Coherence)

•

Complex, replicated object graphs
–

The one

thing Terracotta does well

•

C++
•

<5 physical servers

–

Never

use 2!

•

Large SMP servers
–

Favors Gemstone

•

Sun T2000 (Niagara) w/ small datasets
–

Twofold: We don’t use the TCP accelerator …

–

And the poor per-core performance hurts our network speed
–

Becoming less of an issue but full impact unknown at present…

PoC (Bad for Coherence)

•

Disk
–

Coherence doesn’t (directly) support permanent storage

–

Gemstone is very fast on disk

•

Unsupported APIs
–

Messaging (JMS)

–

JDBC / SQL / Ad hoc query

Future Directions

Integration Plans

•

TopLink
–

Coherence can use TopLink

to access data sources

–

TopLink

can use Coherence as an L2 cache

•

Long Term
–

Merger just completed (officially June 1)

–

Plans are still in progress
–

More details in Q1FY08 (Calendar Q3)

Coherence Roadmap

•

Patching up some weaknesses
–

Event processing

–

Transaction processing improvements
–

Simplifying no-downtime upgrades

–

C++ client coming end of 2007

•

Longer term
–

Isolating workloads on a shared data grid

–

Provisioning improvements

	Coherence Training�Introduction to Coherence
	All Content�Proprietary and Confidential
	Introductions
	Course Structure
	Course Structure
	Topics for Today
	Why Coherence?
	Application Scalability
	A Scalability Refresher
	What is Scalability?
	Scalability Approaches
	The Scale-up Challenge
	Developers and Scalability
	Scalability and Performance
	What do we mean by “Scalable”?
	What do we mean by “Performance”?
	Further Reading
	Coherence Scalability
	Scaling the Application-Tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Scaling the Application-tier �(without Coherence)
	Why Scaling-out the Application-Tier is Hard!
	Why Scaling-out the �Application-Tier is Hard!
	Why Scaling-out the �Application-Tier is Hard!
	Imagine a team where some members…
	Membership Consensus
	Membership Consensus
	Membership Consensus
	Traditional Scale-Out Approaches…
	Traditional Scale-Out Consequences…
	The Coherence Approach…�
	The Coherence Approach…�
	What is Coherence?
	What is Coherence?
	What is Coherence?
	What is Coherence?
	What is Coherence?
	Scaling the Application-tier with Coherence
	Coherence in the �Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence in the Application-Tier
	Coherence Demonstration
	Customer Stories
	Retailer
	Insurance Company
	Hospitality Company
	Gaming Company
	Hedge Fund
	How Coherence Works
	Introduction to NamedCaches
	Introduction to NamedCaches
	The Local Scheme
	The Local Scheme
	The Local Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	The Distributed Scheme
	Under what conditions should Coherence Failover?
	Distributed Scheme�Clients & Servers
	Distributed Scheme�Clients & Servers
	Distributed Scheme�Clients & Servers
	Distributed Scheme�Clients & Servers
	Scheme Composition
	Scheme Composition
	The Near Scheme
	The Near Scheme
	The Near Scheme
	The Near Scheme
	The Near Scheme�Coherency Options
	The Near Scheme
	The Mechanics of Schemes
	The Mechanics of Schemes
	Data Source Integration
	Read Write Backing Map
	Data Source Integration
	Data Source Integration
	Data Source Integration
	Coherence Demonstration�(Revisited)
	Grids and Data Grids
	Different uses of “Grid”
	Different uses of “Grid”
	Clusters, Grids and Data Grids
	Clusters, Grids and Data Grids
	Grid Computing Evolution: Part I
	Grid Computing Evolution: Part II
	Oracle Grid Computing: Enterprise Ready
	How much effort?
	How much effort?
	How much effort?
	How much effort?
	How much effort?
	How much effort?
	Coherence Editions
	Oracle Coherence �Product Set
	Coherence Grid Clients
	Slide Number 113
	Fusion Middleware Integration (Available Now)
	Oracle Fusion Middleware�Coherence Integration Points
	Coherence and Fusion Middleware Short Term Integration
	Coherence Grid with Fusion Middleware
	Coherence as a �Separate Tier with FMW
	Coherence Embedded and Separate Tier
	Session State Management Integration
	Coherence*Web: �Session State Management
	Coherence Persistence Integration
	Oracle Coherence:�Persistence Integration
	SOA Integration
	Oracle Coherence: �SOA Integration
	Maximum Availability Architecture Asymmetric Active/Passive
	Future Fusion Middleware Integration Points
	Future Integration Points
	Cache Coordination for TopLink with Oracle Coherence
	Oracle Application Server JMS Clustering with Coherence
	Accelerating BPEL Performance with Coherence
	Oracle Web Center Portlet Session Sharing
	Maximum Availability Architecture�Active/Active
	Database Positioning
	Database Integration
	Oracle DBMS, TimesTen, Berkeley�Natural Integration Points
	Coherence and TimesTen
	Real-Time Data in the Middle Tier
	Coherence and TimesTen
	Coherence and other Oracle Products (summary)
	How does Coherence compare to other Oracle products?
	Coherence and RAC
	Coherence and TimesTen
	Coherence and Oracle Caching Solutions
	Coherence and TopLink
	Coherence and OC4J/SOA
	Long-Term Positioning
	Solutions Architecture Directions
	The Spectrum of Solutions Architecture
	Types of Coherence Adoption
	Coherence Value
	Customer Use Cases are Shifting
	Identifying Opportunities
	Degrees of Buy-In
	Implications on Lead Qualification
	Implications on Lead Qualification
	Implications on Lead Qualification
	Implications on Lead Qualification
	Implications on Lead Qualification
	Read Caching
	Read Caching
	Presentation Layer
	Optimistic Transactions
	Read Caching Assumptions
	Qualify In: Read Caching
	Qualify Out: Read Caching
	Stateful Applications
	Stateful Applications
	Stateful Applications
	Stateful EJB
	Coherence*Web
	Coherence*Web
	Coherence*Web
	XTP
	Varying Levels of Commitment
	Concurrency Control
	Queries and Analytics
	Queries and Analytics
	Simple Queries
	Simple Queries
	Custom Analytics
	Write-Through Transactions
	Write-Through Transactions
	Write-Behind Transactions
	Write-Behind Transactions
	Real Time Events
	Competitive Analysis
	Competition by Usage Patterns
	Competitive Overview
	Competitive Overview
	Key Coherence Differentiators
	Competitive Field vs Coherence
	Competitive Field vs Coherence
	SWOT: Gigaspaces
	SWOT: GemStone GemFire
	SWOT: IBM ObjectGrid
	SWOT: Terracotta
	Proof of Concepts
	PoC (Good for Coherence)
	PoC (Good for Coherence)
	PoC (Bad for Coherence)
	PoC (Bad for Coherence)
	Future Directions
	Integration Plans
	Coherence Roadmap

